On the Fredholm and Weyl Spectrum of Several Commuting Operators

نویسنده

  • R. LEVY
چکیده

In the paper one considers the local structure of the Fredholm joint spectrum of commuting n-tuples of operators. A connection between the spatial characteristics of operators and the algebraic invariant of the corresponding coherent sheaves is investigated. A notion of Weyl joint spectrum of commuting n-tuple is introduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of essential spectra of bounded linear operators

In this paper‎, ‎we show the stability of Gustafson‎, ‎Weidmann‎, ‎Kato‎, ‎Wolf‎, ‎Schechter and Browder essential spectrum of bounded linear operators on Banach spaces which remain invariant under additive perturbations‎ ‎belonging to a broad classes of operators $U$ such $gamma(U^m)

متن کامل

Measure of non strict singularity of Schechter essential spectrum of two bounded operators and application

In this paper‎, ‎we discuss the essential spectrum of sum of two bounded operators‎ ‎using measure of non strict singularity‎. ‎Based on this new investigation‎, ‎a problem of one-speed neutron transport operator is presented‎.

متن کامل

THE DIRAC OPERATOR OF A COMMUTING d-TUPLE

Given a commuting d-tuple T̄ = (T1, . . . , Td) of otherwise arbitrary operators on a Hilbert space, there is an associated Dirac operator DT̄ . Significant attributes of the d-tuple are best expressed in terms of DT̄ , including the Taylor spectrum and the notion of Fredholmness. In fact, all properties of T̄ derive from its Dirac operator. We introduce a general notion of Dirac operator (in dimen...

متن کامل

Weyl ’ S Theorem and Tensor Products : a Counterexample Derek Kitson ,

Approximately fifty percent of Weyl’s theorem fails to transfer from Hilbert space operators to their tensor product. As a biproduct we find that the product of circles in the complex plane is a limaçon. 0. Introduction To say that “Weyl’s theorem holds”, for a bounded operator T ∈ B(X) on a Banach space X , is to assert [2],[4],[5] that 0.1 σ(T ) \ ωess(T ) = π 00 (T ) ≡ iso σ(T )∩π 0 (T ) : t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005